Classical and Quantum Structuralism *
نویسنده
چکیده
In recent work, symmetric dagger-monoidal (SDM) categories have emerged as a convenient categorical formalization of quantum mechanics. The objects represent physical systems, the morphisms physical operations, whereas the tensors describe composite systems. Classical data turn out to correspond to Frobenius algebras with some additional properties. They express the distinguishing capabilities of classical data: in contrast with quantum data, classical data can be copied and deleted. The algebraic approach thus shifts the paradigm of ”quantization” of a classical theory to ”classicization” of a quantum theory. Remarkably, the simple SDM framework suffices not only for this conceptual shift, but even allows us to distinguish the deterministic classical operations (i.e. functions) from the nondeterministic classical operations (i.e. relations), and the probabilistic classical operations (stochastic maps). Moreover, a combination of some basic categorical constructions (due to Kleisli, resp. Grothendieck) with the categorical presentations of quantum states, provides a resource sensitive account of various quantum-classical interactions: of classical control of quantum data, of classical data arising from quantum measurements, as well as of the classical data processing inbetween controls and measurements. A salient feature here is the graphical calculus for categorical quantum mechanics, which allows a purely diagrammatic representation of classical-quantum interaction.
منابع مشابه
Constacyclic Codes over Group Ring (Zq[v])/G
Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...
متن کاملWhen the classical & quantum mechanical considerations hint to a single point; a microscopic particle in a one dimensional box with two infinite walls and a linear potential inside it
In this paper we have solved analytically the Schrödinger equation for a microscopic particle in a one-dimensional box with two infinite walls, which the potential function inside it, has a linear form. Based on the solutions of this special quantum mechanical system, we have shown that as the quantum number approaches infinity the expectation values of microscopic particle position and square ...
متن کاملPhenomenological Structuralism: A Structurationist Theory of Human Action
Although these factors raised in the writings of Jacques Lacan, Jacques Derrida, and Michel Foucault are theoretically legitimate and have posed tremendous problems for the social sciences and their constitution as a science based on the notion of a stable structure constituted by stable rational subjects with agency. These problems have not adequately been addressed by Marxist social theorists...
متن کاملمروری بر شبکه های عصبی کوانتومی
In this paper the development of quantum neural networks (QNN), and some of presented models and physical implementation are reviewed. How of making use of double-slit experiment for implementing QNN and methods of designing as well as examples of two-layer hybrid networks in QNN constructed from quantum neurons and classical neurons are represented. Some application models of the networks (QNN...
متن کاملاثر برهمکنشهای چهار اسپینی برروی سیمای فاز مدل هایزنبرگ J1-J2 پادفرومغناطیس اسپین 3/2 شبکه لانه زنبوری
In this study, the effect of four-spin exchanges between the nearest and next nearest neighbor spins of honeycomb lattice on the phase diagram of S=3/2 antiferomagnetic Heisenberg model is considered with two-spin exchanges between the nearest and next nearest neighbor spins. Firstly, the method is investigated with classical phase diagram. In classical phase diagram, in addition to Neel order,...
متن کامل